

S. 1 Bridging Handbook

(Mathematics)

Nouns	Verbs	Adjectives	Usage
natural number 自然數			1, 2, 3, 4, are <u>natural numbers</u> .
whole number 整數			0, 1, 2, 3, 4, are <u>whole numbers</u> .
even number 偶數			0, 2, 4, 6, … are <u>even numbers</u> .
odd number 奇數			1, 3, 5, 7, … are <u>odd numbers</u> .
addition 加法	add		2+3 = <u>add</u> 3 to 2
subtraction 减法	subtract		5-2 = <u>subtract</u> 2 from 5
multiplication 乘法	multiply		2×3 = <u>multiply</u> 2 by 3
division 除法	divide		6÷2 = <u>divide</u> 6 by 2
sum 和			the <u>sum</u> of 2 and 3 is 5.
difference 差			the <u>difference</u> of subtracting 2 from 5 is 3.
product 積			the <u>product</u> of 2 and 3 is 6.
quotient 商			the <u>quotient</u> of dividing 6 by 2 is 3.

Chapter 1 Basic Mathematics

Nouns	Verbs	Adjectives	Usage
lowest common multiple (L.C.M.) 最小公倍數			the <u>L.C.M.</u> of 6 and 8 is 24.
highest common factor (H.C.F.) 最大公因數			the <u>H.C.F.</u> of 48 and 54 is 6.
prime number 質數			2, 3, 5, 7, 11, 13, are <u>prime numbers</u> .
composite number 合成數			4, 6, 8, 9, 10, 12, are <u>composite</u> <u>numbers</u> .
prime factor 質因數			2 and 3 are <u>prime factors</u> of 12.
numerator 分子			$\frac{a}{b}$ a is the
denominator 分母			$\frac{a}{b}$ b is the <u>denominator</u> .
proper fraction 真分數			$\frac{7}{8}$ is a proper fraction.
improper fraction 假分數			$\frac{9}{8}$ is an
mixed number 帶分數			$1\frac{1}{8}$ is a <u>mixed number</u> .

Verbal Expressions and calculation in Mathematics

- 1. Find the answer of <u>adding</u> 60 to 10.
- 2. Find the answer of <u>dividing</u> 60 by 10.
- 3. Find the product of 60 and 10.
- 4. Find the <u>L.C.M</u>. of 18 and 27.
- 5. Find the <u>H.C.F.</u> of 18 and 27.
- 6. Convert the mixed number $2\frac{3}{8}$ into an improper fraction.

- 1. 70
- 2. 6
- 3. 600
- 4. 54
- 5. 9
- 6. $\frac{19}{8}$

Nouns	Verbs	Adjectives	Usage
positive numbers 正數		positive	+1, +9 and + 20 are positive numbers.
negative numbers 負數		negative	-1, -9 and -20 are <u>negative numbers</u> .
directed number 有向數			numbers with a + or - sign are <u>directed numbers</u>
opposite number 相反數			+5 and -5 are opposite numbers.
number line 數線			-2 -1 0 +1 +2 -2 -1 0 +1 +2 origin
origin 原點			The position of 0 on the <u>number line</u> .
ascending order 由小至大			1, 2, 3, 4, 5
descending order 由大至小			5, 4, 3, 2, 1

Chapter 2 Directed numbers and the Number Line

Verbal Expressions and calculation in Mathematics

- 1. Arrange the numbers 8, 3, 11, 7 in descending order.
- 2. Arrange the numbers 8, 3, 11, 7 in <u>ascending order</u>.
- 3. Find the answer of (-3)+(+8).
- 4. Find the answer of $(-3)\times(+8)$.

- 1. 11, 8, 7, 3
- 2. 3, 7, 8, 11
- 3. +5
- 4. -24

Chapter 3 Introduction to Algebra

Nouns	Verbs	Adjectives	Usages
Algebra			Use symbols or letters to
代數			represent unknown
algebraic			2a+6 is an algebraic
expression			expression.
代數式			
index notation			the index notation of
指數記數法			9x9x9x9 is 9 ⁴
expanded			the expanded form of 9 ⁴
form 連乘式			is 9x9x9x9
base 底			for 9 ⁴ , 9 is the <u>base</u> .
index 指數			for 9 ⁴ , 4 is the <u>index</u> .
exponent 指數			for 9 ⁴ , 4 is the <u>exponent</u> .
Substitution	substitute		<u>substitute</u> a by 3,
代入	Substitute		2a+6=2x3+6=12
Formula			The <u>formula</u> for the
公式			perimeter of a circle is
Variabla			$P=2\pi I$
valiable 総 數			r is a variable
			In the formula $P=2\pi r$
常數			2 and π are constants.
Sequence			1, 3, 5, 7, 9 form a
數列			<u>sequence</u> of numbers.
Term			The sequence 1, 3, 5, 7,
項			9 has 5 <u>terms</u> .
			For the sequence 1, 5,
arithmetic			9, 13, 17, 21,, the
Sequence 笙 羊 數 列			difference between each
于左数21			arithmetic sequence
			For the arithmetic
general term			sequence 1, 5, 9, 13, 17,
通項			21,, the <u>general term</u>
			is 4n-3
Function			T=4n-3
函數			I is a <u>function</u> of n.

Verbal Expressions and calculation in Mathematics

- 1. Simplify the <u>algebraic expression</u> a+a+a-2a.
- 2. Write down the <u>index notation</u> of 5x5x5x5x5x5
- 3. Write down the expanded form of a^5
- 4. <u>Substitute</u> a by 2 and find the value of $a+2a^2+3a^3$
- 5. Find the missing term n in the <u>arithmetic sequence</u> 2, 7, 12, n, 22, 27, ...

- 1. 2a
- 2. 5⁶
- 3. a x a x a x a x a
- 4. 34
- 5. n=17

Chapter 4 Algebraic Equations in One Unknown

Nouns	Verbs	Adjectives	Usages
algebraic equation 代數方程			a+4=10 is an <u>algebraic</u> equation.
Unknown 未知數			a is an <u>unknown</u> in the equation a+4=10
Solution 解			The <u>solution</u> of the equation a+4=10 is a=6
Root 根			The <u>root</u> of the equation a+4=10 is a=6
	Solve 解		Solve the equation a+4=10
transposition of terms 移項			technique of moving terms from one side of an equation to the other side

Verbal Expressions and calculation in Mathematics

- 1. Find the <u>unknown</u> a of the equation 2a+6=14
- 2. <u>Solve</u> the equation 6a-5=13
- 3. Find the solution of the equation 3a/12=4

- 1. a=4
- 2. a=3
- 3. 16

Nouns	Verbs	Adjectives	Usages
Geometry 幾何			<u>Geometry</u> is an important branch of Mathematics.
Straight line 直線			In the figure, BC is a <u>straight line</u> .
Curved line 曲線			Which line is a <u>curved line</u> ?
End point 端點			AB is a straight line. Point A and point B are the <u>end points</u> .
Vertex 頂點			O is the <u>vertex</u> of ∠AOB.
Angle 角			The sum of all the interior <u>angles</u> of a triangle is 180∘
Round angle 周角			<u>Round angle</u> is 360∘ .
Straight angle 平角			<u>Straight angle</u> is 180∘ .
Right angle 直角			<u>Right angle</u> is 90∘ .
Acute angle 銳角			<u>Acute angle</u> is between 0 and 90∘ .
Obtuse angle 鈍角			<u>Obtuse angle</u> is between 90∘ and 180∘ .
Reflex angle 反角			Reflex angle is between 180∘ and 360∘ .

Nouns	Verbs	Adjectives	Usages
Parallel lines 平行線		Parallel	AB is <u>parallel</u> to CD.
Perpendicular lines 垂直線		Perpendicular	EF is <u>perpendicular</u> to GH.
Triangle 三角形		Triangular	We can classify <u>triangles</u> according to their sides or angles.
Equilateral triangle 等邊三角形			All sides of an <u>equilateral</u> <u>triangle</u> are of equal length.
Isosceles triangle 等腰三角形			Two sides of an <u>isosceles</u> <u>triangle</u> are of equal length.
Scalene triangle 不等邊三角形			All sides of a <u>scalene</u> <u>triangle</u> are of unequal length.
Convex polygon 凸多邊形			All interior angles of a <u>convex polygon</u> are less than 180∘ .
Concave polygon 凹多邊形			At least one of the interior angles of a <u>concave</u> <u>polygon</u> is greater than 180∘ .
Diagonal 對角線			The line segment joining any two non-adjacent vertices of a polygon is a <u>diagonal</u> .
Radius 半徑			The <u>radius</u> of the circle is 5cm.
Diameter 直徑			The <u>diameter</u> of a circle is twice the radius in length.

Nouns	Verbs	Adjectives	Usages
Circumference 圓周		Circumscribed 圓外接	The <u>circumference</u> of a circle is the product of 2 π and the radius.
Polyhedron 多面體			<u>Polyhedron</u> is a solid enclosed by polygon.
Cuboid 長方體			A <u>cuboid</u> has twelve edges.
Cube 立方體		Cubical	A <u>cube</u> has six faces.
Prism 凌柱			The base of a <u>prism</u> is a polygon.
Cylinder 圓柱體		Cylindrical	<u>Cylinder</u> has uniform cross section.
Cone 圓錐體		Conical	<u>Cone</u> does not has uniform cross section.
Uniform cross-section 均勻横切面			Prism has <u>uniform</u> <u>cross section</u> .
Isometric grid 等距方格			Draw the 2-D representation of the solid on the <u>isometric grid</u> paper.
Oblique grid 斜網方格			Draw the 2-D representation of the solid on the <u>oblique grid</u> paper.
Construction 構做	Construct		<u>Construct</u> an equilateral triangle of any size.

Verbal Expressions and calculation in Mathematics

- 1. In $\triangle ABC$, $\angle A = 80^{\circ}$, $\angle B = 75^{\circ}$, find the value of $\angle C$.
- 2. How many vertices are there in a triangular prism?
- 3. Refer to the following figures, which figure is a <u>concave</u> <u>polygon</u>?

- 4. What is the <u>uniform cross-section</u> of a <u>cylinder</u>?
- 5. How many <u>diagonals</u> are there in a pentagon?

- 1. $\angle C$ is 25°.
- 2. There are six vertices in a triangular prism.
- 3. Figure 2 is a <u>concave polygon</u>.
- 4. The <u>uniform cross-section</u> of a <u>cylinder</u> is a circle.
- 5. There are five <u>diagonals</u> in a pentagon.

Chapter 6

Introduction to Statistics and Statistical Charts

Nouns	Verbs	Adjectives	Usages	
Statistics		Statistical	We can draw <u>statistical</u>	
Statistics		統計學的	diagrams to present	the data.
Datum			Read the following d	ata.
(singular)			Favourite sports of F	.1A
Data			students:	
(plural)			Favourite sports	no. of stu
數據			Badminton	12
			Basketball	18
			Football	5
			Volleyball	5
Directo			The following are <u>dis</u> <u>data</u> .	<u>screte</u>
Discrete			No. of family member	ers of
離散數據			<u>20 students</u> : 5, 5, 4, 6, 4, 3, 2, 4, 3 7, 5, 3, 4, 5, 3, 3, 3	3, 2, 3, 4,
			The following are <u>co</u> <u>data</u> .	<u>ntinuous</u>
			Weights (in kg) of	
Continuous			12 members of	
Uala 油 嫱 數 據			a basketball team:	
王領赵塚			45.2, 56.0, 47.5, 44.0	6, 38.5,
			40.3, 42.4, 45.3, 42.0	6, 51.4,
			49.0, 51.5	
Diagram			He draws a <u>diagram</u>	to
圖		Diagrammatic	explain his idea.	
Graph			This graph shows the	e
圖表		Graphical	favourite games of 180	
凹衣			students.	

Nouns	Verbs	Adjectives	Usages
Increase	Increase 增加		This year: \$400 Next year: \$500 The price will <u>increase</u> in next year
Decrease	Decrease 减少		This year: \$500 Next year: \$400 The price will <u>decrease</u> in next year.
Broken- Line Graph 折線圖			The following broken-line graph shows the profits of a company from 2005 to 2009.
Pie Chart 圓 形 圖			The following <u>pie chart</u> shows the sizes of shoes sold in a shop. Sizes of shoes sold in a shop $\frac{7}{98 \text{ pairs}}$

Nouns	Verbs	Adjectives	U	sages
			Each slice of	a pie chart is
			called a sector	<u>or</u> .
Sector			$ \land $	
扇形				
			In the numbe	er 478
Digit		Digital	Hundred <u>digi</u>	<u>t</u> is 4
數位		2.9	Ten <u>digit</u> is 7	
			Unit <u>digit</u> is 8	
Stem			We take the	ten digit
幹			as the "stem"	
Leat			We take the	unit digit
業			as the "leaf".	
			The following	s <u>tem-and-leaf</u>
			diagram show	ws the IQ scores
Stem -			of a group of	18 students.
and -			Stem (tens)	Leaf (units)
Leat			9	123
Diagram 赴華圖			10	23566
17 木四			11	456789
			12	0239

Nouns	Verbs	Adjectives	Usages	
Frequency 頻數	Frequent	Frequent	From the data, "3cm" occures 7 times. The <u>frequency</u> of "3cm" is 7.	
Distribution 分佈	Distribute		Complete the frequency distribution table.	
Tally 劃記		The <u>tally</u> mark <i>## ///</i> stands for 8.		
Frequency Distribution Table 頻數分佈表			The following frequencydistribution tableshows theweights of 30 S1 students.Table 1:Weight (kg)Tally $31 - 35$ ## $36 - 40$ ## $41 - 45$ ## $40 - 50$ ##	

Verbal Expressions and calculation in Mathematics

- 1. Is the following <u>discrete data</u> or <u>continuous data</u>? "Lengths of some stamps"
- 2. In the table, what is the trend of the population

Year	1990	1995	2000	2005	2010
Population (million)	5.8	6.3	6.7	6.9	7.3

3. What is the name of the following statistical diagram?

<u>Answers</u>

- 1. It is continuous data.
- 2. The trend of the population is increasing.
- 3. Bar chart

Chapter	7	Percentages	(I))
---------	---	-------------	-------------	---

Nouns	Verbs	Adjectives	Usages
Percentage 百分率			A <u>percentage</u> is a fraction with 100 as its denominator(分母) ²⁷
4 / 1			$\frac{27}{100} = 27\%$
Increase 增值			Increase = new value – original value Original value = 80 New value = 85 Increase = 85 – 80 = 5
Percentage increase 百分增加			$\frac{\text{Percentage increase}}{\text{original value}} = \frac{\frac{\text{increase}}{\text{original value}} \times 100\%}{\text{original value}}$ Original value = 50 New value = 54 Percentage increase = $\frac{54-50}{50} \times 100\% = 8\%$
Decrease 减值			<u>Decrease</u> = original value – new value Original value = 85 New value = 80 Decrease = 85 – 80 = 5
Percentage decrease 百分减少			$\frac{\text{Percentage decrease}}{\text{original value}} = \frac{\frac{\text{decrease}}{\text{original value}}}{\text{New value}} \times 100\%$ Original value = 54 New value = 27 Percentage decrease = $\frac{54-27}{54} \times 100\% = 50\%$
Cost price 成本			The price that the shop pays for the product is called the <u>cost price</u> .
Selling price 售價			The price that the shop sells the product to its customers is called the <u>selling price</u> .

Nouns	Verbs	Adjectives	Usages
Profit per cent 盈利百分率			$\frac{\text{Profit per cent}}{\text{cost price}} = \frac{\frac{\text{profit}}{\text{cost price}} \times 100\%}{\text{Cost price}} = \100 Selling price = \$120 Profit per cent = $\frac{120 \cdot 100}{100} \times 100\% = 20\%$
Loss 虧蝕			$\frac{\text{Loss}}{\text{Cost price}} = \text{cost price} - \text{selling price}$ Cost price = \$100 Selling price = \$80 Loss = \$(100 - 80) = \$20
Loss per cent 虧蝕百分率			$\frac{\text{Loss per cent}}{\frac{\log s}{\cos t \text{ price}} \times 100\%}$ Cost price = \$100 Selling price = \$80 Loss per cent $= \frac{100 - 80}{100} \times 100\% = 20\%$
Marked price 標價			The price which is marked on or attached to a product for sale (減價) is called <u>marked</u> <u>price</u> .
Discount 折扣			<u>Discount</u> = marked price – selling price Marked price = \$400 Selling price = \$350 Discount = \$(400 – 350) = \$50
Discount per cent 折扣百分率			$\frac{\text{Discount per cent}}{\text{marked price}} = \frac{\frac{\text{discount}}{\text{marked price}} \times 100\%}{\text{Marked price}} = \400 Selling price = \$400 Selling price = \$350 Discount per cent = $\frac{400 - 350}{400} \times 100\%$ = 12.5%

Verbal Expressions and calculation in Mathematics

- Dick weighted 56 kg six months ago. If he is now 7kg heavier, find the <u>percentage increase</u> in his weight.
- 2. Nancy got \$960 as red pocket money during the Chinese New Year last year. This year, however, she only gets \$840. Find the <u>percentage decrease</u> in her pocket money.
- 3. The <u>cost</u> of a house was \$4800000 and it was sold at a <u>loss</u> of 7%.
 - (a) What was the loss?
 - (b) What was the selling price?
- 4. If a shopkeeper sells an article at \$6, then the <u>profit</u> <u>per cent</u> is 20%. What will be the <u>selling price</u> of the article if the shopkeeper reduces her <u>profit per cent</u> to 10%.
- 5. The <u>marked price</u> of a toy car is \$45 and it is sold at a <u>discount</u> of 20%.
 - (a) Find the <u>selling price</u> and the <u>discount</u> of the toy.
 - (b) If the selling price is now changed to \$27, find the <u>discount per cent</u>.

- 1. The percentage increase in his weight is 12.5%.
- The <u>percentage decrease</u> in her pocket money is 12.5%.
- 3. (a) The <u>loss</u> is \$336000.
 - (c) The selling price is \$4464000.
- 4. The new <u>selling price</u> is \$5.5.
- 5. (a) The <u>selling price</u> of the toy is \$36. The <u>discount</u> of the toy is \$9
 - (b) The <u>discount per cent</u> of the toy is 40%.

Chapter 8 Approximate values and

Numerical Estimation

Nouns	Verbs	Adjectives	Usages
Estimation	Estimato		Find the population of Hong Kong by <u>estimation</u> .
估算	Estimate		<u>Estimate</u> the population of Hong Kong.
Rounding off	Round off 四捨五入		Round off 4672 correct to the nearest ten. Answer: 4670
		Correct to 準確至	Round off 4672 <u>correct to</u> the nearest ten. Answer: 4670
		Nearest 最接近的	Round off 4672 correct to the <u>nearest</u> ten. Answer: 4670
Integer 整數			1, 2, 3, 4,5 are <u>integers</u> .
Decimal 小數			165.4 is a <u>decimal</u> .
Decimal place 小數位			165.4 has 1 <u>decimal place</u> .
Approximation		Approximate 近似的	\$13.9 ≈ \$14 The <u>approximate</u> value of \$13.9 is \$14.
Strategy 策略			Rounding off is one of the Estimation <u>Strategies</u> .

S.1/Maths/Chapter 8S.1/Maths/Chapter 8

Verbal Expressions and calculation in Mathematics

- 1. The number of students in a school is 1175, <u>round off</u> the number of students <u>correct to</u> the <u>nearest</u> hundred.
- 2. Write down a decimal which has 2 decimal places.
- 3. The price of a book is \$48. What is the <u>approximate</u> price of the book?

Answers

- 1. The number of students is 1200.
- 2. 3.75 (or other reasonable answers)
- 3. The approximate price is \$50.

•

Nouns	Verbs	Adjectives	s Usages	
Area 西積			5 cm 3 cm	
<u>ц</u> 1 <u>д</u>			The <u>area</u> of the rectangle is $5 \times 3 = 15 \text{ cm}^2$.	
Perimeter 周界			4 cm The <u>perimeter</u> of the square is $4 \times 6 = 24 \text{ cm}$.	
Polygon 多邊形			A <u>polygon</u> is a closed plane	
Rectangle 矩形			Rectangle :	
Trapezium 梯形			Trapezium :	
Parallelogram 平行四邊形			Parallelogram :	

Chapter 9 Areas and Volumes (I)

Nouns	Verbs	Adjectives	Usages
Triangular prism 三棱柱			<u>Triangular prism</u> :
Total surface area 總表面面積			6 cm 3 cm The total surfce area is $(3 \times 2 + 2 \times 6 + 6 \times 3) \times 2$ $= 72 \text{ cm}^2$
Total area of all lateral faces 所有側面面積			The total area of all lateral faces is $3\times6 + 5\times6 + 4\times6$ = 72cm ²

Verbal Expressions and calculation in Mathematics

1. Find the <u>areas of the following figures</u>.

2. Find the <u>volumes</u> of the following solids with <u>uniform cross-sections (shaded)</u>.

- 3. The volume of a <u>cuboid</u> is 37 800 cm³. If the length and the width are 0.35 m and 200 mm respectively, find the <u>height</u> in cm.
- 4. Find the total surface area of the following prism:

5. Find the <u>total area of all lateral faces</u> of the following <u>triangular</u> <u>prism</u>:

- 1. (a) The <u>area</u> is 180m².
 - (b) The<u>area</u> is 1240 m².
- 2. (a) The volume is 105 cm^3 .
 - (b) The volume is 812cm³.
- 3. The height of the cuboid is 54cm.
- 4. The total surface area of the prism is 3200cm².
- 5. The total area of all lateral faces is 104 cm².

Nouns	Verbs	Adjectives	Usages
Monomial 單項式			A <u>monomial</u> is an algebraic expression with only one term e.g. -3 , $2a^2$, $3bt^3$
Coefficient 係數			$2x + 3xy^{2} - 5y^{3}$ <u>Coefficient</u> of x = 2 <u>Coefficient</u> of xy^{2} = 3 <u>Coefficient</u> of y^{3} = -5
Polynomial 多項式			A <u>polynomial</u> can be a monomial or the sum of two or more monomials. e.g. $4x$, $2x + 4y + 5z$, $6t^3 + 7b^2$
Degree 次數			For $6y^2$, <u>degree</u> = 2 For $3x^3yz^2$, <u>degree</u> = 3 + 1 + 2 = 6 For $2xy + 3x^3 + 4y^4$, <u>Degree</u> of polynomial = highest <u>degree</u> of all terms = 4
Constant term 常數項			The term does not contain any variable is called <u>constant term</u> . e.g. For $2xy + 3x^3 + 4y^4 + 5$, <u>constant term</u> = 5
Like terms 同類項			The terms that contain the same variable(s) to the same power(s) are called <u>like</u> terms. e.g. $2xy^2$, $4xy^2$

Chapter 10 Manipulation of Simple Polynomials

Nouns	Verbs	Adjectives	Usages
Unlike terms 異類項			The terms that does not contain the same variable(s) to the same power(s) are called <u>unlike terms</u> . e.g. $2xy^2$, $3x^2y^3$
Descending powers 降冪			Arrange $1 - x^4 - 10x + 5x^2$ in <u>descending powers</u> of <i>x</i> : $-x^4 + 5x^2 - 10x + 1$
Ascending powers 升冪			Arrange $1 - x^4 - 10x + 5x^2$ in <u>ascending powers</u> of <i>x</i> : $1 - 10x + 5x^2 - x^4$
Distributive law of multiplication 乘汰分配律			Distributive law of multiplication : a (x + y) = ax + ay (x + y)a = xa + ya
Expansion 展開式	Expand		Expand $3(a + 2b)$ 3(a + 2b) = 3a + 6b The <u>expansion</u> of $3(a + 2b)$ is $3a + 6b$.

Verbal Expressions and calculation in Mathematics

1. Which of the following algebraic expressions is/are polynomials?

 $2x + 3xy^2z$, -4, 6y, \sqrt{x} , $\frac{4}{t}$

- 2. For the polynomial $-5y^3 + 6xy 2$, find
 - (a) the <u>coefficient</u> of *xy*
 - (b) the number of terms
 - (c) the constant term
 - (d) its <u>degree</u>.
- 3. Arrange the terms of the polynomial $-3y + 4 5y^5$
 - (a) in <u>descending powers</u> of y;
 - (b) in ascending powers of y.
- 4. Expand the following polynomial :
 - (a) 3(2*x* + 6*y*)
 - (b) (x + y)(x 2y)

<u>Answers</u>

- 1. $2x + 3xy^2z$, -4, 6y are polynomials.
- 2. (a) The <u>coefficient</u> of xy is 6.
 - (b) The number of terms is 3.
 - (c) The constant term is -2
 - (d) Its <u>degree</u> is 3.
- 3. Arranged in <u>descending powers</u> of *y*: $-5y^5 3y + 4$ Arranged in <u>ascending powers</u> of *y*: $4 - 3y - 5y^5$
- 4. (a) The expansion of the polynomial is 6x + 18y.
 - (b) The expansion of the polynomial is $x^2 xy 2y^2$.

Chapter 11 Angles related to Lines

Nouns	Verbs	Adjectives	Usages
Adjacent angles on a straight line 直線上的鄰角			The sum of all the <u>adjacent angles on a</u> <u>straight line</u> is 180∘.
Angles at a point 同頂角			The sum of all the <u>angles</u> <u>at a point</u> is 360∘.
Common arm 公共臂			Adjacent angles are angles with a <u>common</u> <u>arm</u> .
Common vertex 公共頂點			Angles at a point are angles with a <u>common</u> <u>vertex</u> .
Vertically opposite angles 對項角			When two straight lines intersect, the <u>vertically</u> <u>opposite angles</u> are equal.
Transversal 截線			A straight line intersects two straight lines is called the <u>transversal</u> of the two straight lines.
Corresponding angles 同位角			If two parallel lines are cut by a transversal, then the <u>corresponding angles</u> are equal.
Alternate angles 內錯角			If two parallel lines are cut by a transversal, then the <u>alternate angles</u> are equal.
Interior angles 內角			If two parallel lines are cut by a transversal, then the sum of <u>interior angles</u> is 180∘.

Nouns	Verbs	Adjectives	Usages
Supplement		Supplementary 互補	If the interior angles formed by a transversal and two lines are <u>supplementary</u> , then these two lines are parallel.
Reason 原因		reasonable	Is AB parallel to CD? Give the <u>reason</u> .
Proof 証明	Prove		<u>Prove</u> that AB is parallel to CD.
Bisection	Bisect 平分		The straight line CD <u>bisects</u> ∠AOB.
		Parallel 平行	If AB is <u>parallel</u> to CD, then a = b.
Intersection	Intersect 相交		AB <u>intersects</u> CD at the point E.

Verbal Expressions and calculation in Mathematics

1. AOB is a straight line, find a.

2. Find *b*.

If *AB//CD*, find *c*.

4.

Refer to the figure , write down all pairs of <u>corresponding</u> <u>angles</u>, <u>alternate angles</u> and <u>interior angles</u>.

Is AB parallel to CD? Give the reason.

47

- 1. 400
- 2. 1210
- 3. 60°
- 4. <u>Corresponding angles</u>: *a* and *e*, *b* and *f*, *c* and *g*, *d* and *h*.
 <u>Alternate angles</u> : *c* and *f*, *d* and *e*.
 <u>Interior angles</u> : *c* and *e*, *d* and *f*.
- 5. : $60 \circ + 120 \circ = 180 \circ$: AB //CD (int. \angle s supp.)

Nouns	Verbs	Adjectives	Usages
Ordered pair 序偶			A pair of ordered numbers is called an <u>ordered pair</u> . e.g. (1, 2), (3, –4)
Rectangular coordinate plane 直角坐標系統			Rectangular coordinate plane : x^{y} l x^{y}
Coordinate axis 坐標軸			$\frac{\text{Coordinate}}{x} \xrightarrow{y} v$ -axis
x – axis x 軸			<u>x-axis</u>
y – axis y 軸			O origin x
Origin 原點			
Quadrant 象限			$\begin{array}{c c} y \\ \hline Quadrant II \\ \hline Quadrant II \\ \hline Q \\ \hline Quadrant III \\ \hline Quadrant IV \\ \end{array}$

Chapter 12 Introduction to Coordinates

Nouns	Verbs	Adjectives	Usages
Coordinates 坐標			+++++++++++++++++++++++++++++++++++++++
x- coordinates x 坐標			
y - coordinates y 坐標			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Plot 繒晝		Plot the point A(1, 2) on the coordinate plane.
Point of Intersection 交點			y <u>Point of</u> <u>intersection</u> x
Horizontal line 水平線			y <u>Vertical line</u>
Vertical line 鉛垂線			$\begin{array}{c c} & & & \\ \hline & & & \\ O \end{array} \xrightarrow{Horizontal} \\ \hline & & \\ \hline & & \\ & & \\ \hline & & \\ O \end{array}$

Nouns	Verbs	Adjectives	Usages
Distance 距離			The <u>distance</u> between (1, 5) and (4, 5) is 4 - 1 = 3 units
Length 長度			A(3, -1), B(3, 4) The <u>length</u> of AB is 4 - (-1) = 5
Area 面積			The <u>area</u> of $\triangle ABC$ is $\frac{(2 - (-3)) \times 7}{2}$ = 17.5 sq. units.
Translation 乎移	Translate		If $A(2, 5)$ is <u>translated</u> to the right by 4 units, then the coordinates of its image $A' = (2 + 4, 5) =$ (6, 5)
Reflection 反射	Reflect		If $B(3, 5)$ is <u>reflected</u> about the y-axis to B' , then the coordinates of its image B' are (-3, 5)
Rotation 旋轉	Rotate		If $C(3,4)$ is <u>rotated</u> anti- clockwise about O through 90° to C', then the coordinates of C' are (-4, 3)

Nouns	Verbs	Adjectives	Usages
Clockwise 順時針			direction:
Anti- clockwise 逆時針			Anti-clockwise direction:
Polar coordinate plane 極坐標平面			$\mathcal{P}^{(r, \theta)}$
Pole 極點			radius vector > r
Polar axis 極軸			polar angle
Radius vector 極徑			o ∕ θ ∕ rolar axis
Polar angle 極角			
Polar			The <u>polar coordinates</u> of P are (r, θ) .
rolai coordinates 極坐標			150° 180° 210° 240° 270° 30° 4 5 6 330° 330° 330° 330° 330° 330°

Verbal Expressions and calculation in Mathematics

1. Write dwon the coordinates of points P, Q, R, S, T.

- 2. Find the <u>distance</u> between the points A(-4, -2) and B(6, -2).
- 3. Find the area of the following figure.

- 4. If P(4, -2) is <u>translated</u> to the left by 5 units to P_1 find the <u>coordinates</u> of P_1 .
- If P(-3, 4) is <u>reflected</u> about the <u>y-axis</u> and the <u>x-axis</u> to Q and R respectively, find the <u>coordinates</u> of Q and R.
- If P(-1, -6) is <u>rotated anti-clockwise</u> about the <u>origin</u> through180°to Q, find the <u>coordinates</u> of Q.
- Write down the <u>polar coordinates</u> of *A*, *B*, *C*, *D* and *E* on the following <u>polar coordinate plane</u>.

- The coordinates of P are (-5, 4)
 The coordinates of Q are (-3, -2)
 The coordinates of Rare (3, -2)
 The coordinates of S are (7, 8)
 The coordinates of T are (8, 8)
- 2. The distance between *A* and *B* is 10 units.
- 3. The area of the figure is 32 sq. units.
- 4. The coordinates of P_1 are (-1, -2).
- 5. The coordinates of Q are (3, 4).The coordinates of *R* are (-3, -4).
- 6. The coordinates of Q are (1, 6)
- 7. The polar coordinates of *A* are $(2, 0^0)$ The polar coordinates of *B* are $(1, 60^0)$ The polar coordinates of *C* are $(3, 150^0)$ The polar coordinates of *D* are $(4, 210^0)$ The polar coordinates of *E* are $(5, 300^0)$